

D1.2

Report on specifications and overall
architecture

Project number: 317930

Project acronym: HINT

Project title:
Holistic Approaches for Integrity of ICT-

Systems

Start date of the project: 1st October, 2012

Duration: 36 months

Programme: FP7/2007-2013

Deliverable type: Report

Deliverable reference number: ICT-317930 / D1.2 / 1.0

Work package contributing to the

deliverable:
WP 1

Due date: May 2013 – M08

Actual submission date: 21st June, 2013

Responsible organisation: CCS

Editor: CCS (Marc MOUFFRON)

Dissemination level: Public

Revision: 1.0

Abstract:

In this document, following the definition of

the project’s use cases in D1.1 and the

identification of their corresponding security

requirements, we further detail their security

analysis. Then we present two architectures

that shall constitute the backbone of the HINT

technology: one based on PUFs and the

second one based on side channel analysis.

Finally we provide a first idea of how we

intend to demonstrate those architectures

through dedicated prototypes.

Keywords:

Smart ID Cards, Professional Mobile Radio,

Security Analysis, Physically Unclonable

Functions, Side Channel Analysis, Hardware

Trojans, Architecture, Application prototypes

D1.2 – Report on specifications and overall architecture

HINT D1.2 I

Editor

Marc Mouffron (CCS)

Contributors

Thomas Hübner (MOR)

Carsten Rust (MOR)

Holger Bock (IFAT)

Jacques Fournier (CEA)

Julien Francq (CCS)

Verena Brunner (TEC)

Martin Deutschmann (TEC)

Jean-Baptiste Rigaud (ARMINES)

Dave Singelée (KUL)

Jens Hermans (KUL)

Disclaimer

The research leading to these results has received funding from the European Union’s

Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 317930.

D1.2 - Report on specifications and overall architecture

HINT D1.2 II

Executive Summary

This report on specification and overall architecture is the second and final deliverable of
WP1 of the HINT project.

The role of this deliverable is to define the overall trust architectures and their use in the
application prototypes. It includes descriptions of:

 a complement on use cases and security analysis. This analysis focuses on the PUF
Authentication and PUF-based signature for ID-cards and on Hardware Trojan
detection on PMR handhelds.

 a trust architecture based on the two building blocks: PUF anchors and SCA
detection of Hardware Trojan. The PUF-based architecture explains the PUF
integration in the ID-card and the required management to achieve authentication and
signature capacity. The SCA-based architecture sets up the environment and tool
chain for Hardware Trojan inclusion and detection on a FPGA board.

 the overall architecture for the two HINT application prototypes. The Unclonable ID-
card application shows the whole lifetime management of a PUF-based ID-card. The
PMR prototype evinces the modus vivendi of HT detection on an actual product.

This report reflects contributions from the HINT partners and provides the technical
specifications for the study and development work of next WPs.

The two roots of trust in HINT are the PUF-based and SCA-based technologies. They
complement each other and could have been combined in a single application. Nevertheless
due to the intrinsic novelty and complexity of each technology the HINT partners will
demonstrate them separately. Each of the following WPs will be dedicated to one point
specifically. The PUF-based architecture intended for use in ID-card set forth the work on
WP2. The SCA-based architecture defines the content of WP3 to design and detect the
Hardware Trojans. The outputs of WP2 and WP3 provide the basis of the two application
prototypes ID-card with PUF-based authentication features and PMR prototype with HT
demonstration and detection.

This WP1 has stated the usages and stakes of the overall trust architectures. The preliminary
definitions of the PUF-based architecture and the SCA-based architecture are set out. They
would be improved through the work on the next WPs as results are obtained. This would be
finally demonstrated by the two application prototypes defined in the last chapter.

D1.2 - Report on specifications and overall architecture

HINT D1.2 III

Contents

Chapter 1 Introduction ... 1

Chapter 2 HINT Use Cases Security Analysis .. 3

2.1 HINT contribution to Protection Profiles ... 3

2.2 Security Functions for the HINT ID-Card Use Case ... 4

2.2.1 Specification of Security Functionality enabled through PUF technology................ 4

2.2.1.1 Solely PUF-based Authentication of an ID-card .. 4

2.2.1.2 PUF-Based Signature .. 5

2.2.1.3 PUF-Based Authentication Making Use of Signature Schemes 6

2.2.1.4 PUF-Based Authentication Making Use of Diffie-Hellman Variants 6

2.2.2 Security Features concerning the PUF itself .. 7

2.2.2.1 PUF-Authentication of an ID-card ... 7

2.2.2.2 PUF-Based Signature .. 8

2.2.3 HINT contribution to Protection Profiles for unclonable ID-cards 8

2.3 Security Analysis of the PMR Use Case .. 9

2.3.1 Security Analysis .. 9

2.3.1.1 The Threats .. 9

2.3.1.2 The Organisational security policies ..10

2.3.1.3 The Assumptions...10

2.3.1.4 The Security Objectives...10

2.3.2 Coverage ..11

Chapter 3 HINT Architecture .. 13

3.1 HINT & Trusted Computing .. 13

3.2 System Overview ... 15

3.3 PUF-based Architecture ... 15

3.3.1 Trust Architecture Specification ...16

3.3.2 Hardware Architecture Specification of the ID-Card Semiconductor Device18

3.3.3 Helper data schemes needed for Post-Processing of PUF Raw Data19

3.3.4 Assessment through robustness and vulnerability analysis20

3.4 SCA-based architecture ... 23

3.4.1 Trust Architecture specification ...23

3.4.2 Technical specification of the platform ..24

3.4.3 Tool chain and automation ..27

3.4.4 Requirements..29

3.4.5 Assessment of the relevance of SCA for HT detection ..30

D1.2 - Report on specifications and overall architecture

HINT D1.2 IV

Chapter 4 HINT Application Prototypes .. 32

4.1 Unclonable ID Cards Prototype.. 32

4.1.1 PUF-based authentication ...32

4.1.1.1 Enrolment / Registration ..32

4.1.1.2 Identification / Authentication in the field ..32

4.1.2 Extracting a Signature-Key from a PUF...33

4.1.2.1 PUF-based Signature-Key recovery ..33

4.1.2.2 Enrolment / Key-generation / Helper Data generation33

4.1.2.3 Key-recovery / Signature generation ...34

4.1.3 ID-Card prototype specifications ...35

4.2 PMR Prototype... 35

4.2.1 Overview of the prototypes..35

4.2.2 The “on-the-field” or “at-time-of-use” checking ..36

Chapter 5 Conclusion ... 37

D1.2 - Report on specifications and overall architecture

HINT D1.2 V

List of acronyms

AES Advanced Encryption Standard

ASIC Application Specific Integrated Circuit

BCH Bose Ray-Chandhiri Hocquenghen

CC Common Criteria

CCRA Common Criteria Recognition Arrangement

CMOS Complementary Metal Oxide Semiconductor

COTS Commercial Off-The-Shelf

CPLD Complex Programmable Logic Device

CRP Challenge-Response Pair

CRTM Core Root of Trust for Measurement

CTRL Control

DEMA Differential Electromagnetic Analysis

DES Data Encryption Standard

DH Diffie Hellman

DSA Digital Signature Algorithm

DSP Digital Signal Processing

DUT Device Under Test

EAL Evaluation Assurance Level

ECC Error Correcting Code

ECDH Elliptic Curve Diffie-Hellman

ECDSA Elliptic Curve Digital Signature Algorithm

EEPROM Electrically Erasable Programmable Read Only Memory

EM ElectroMagnetic

FE Fuzzy Extractor

FPGA Field Programmable Gate Array

FSM Finite State Machine

GPU Graphics Processing Unit

HT Hardware Trojan

HTIE Holistic Tool for Information Extraction

HW Hardware

IAS Integrity Authentication Scheme

IC Integrated Circuit

ICT Information and Communications Technology

ID Identity

D1.2 - Report on specifications and overall architecture

HINT D1.2 VI

IP Intellectual Property

IV Input Vector

ML Machine Learning

NVM Non-Volatile Memory

OS Operating System

PIN Personal Identification Number

PMR Professional Mobile Radiocommunications

PUF Physically Unclonable Function

RAM Random Access Memory

RNG Random Number Generator

RSA Rivest Shamir Adleman

RT Real-Time

SCA Side Channel Analysis

SFR Security Functional Requirement

SRAM Static Random Access Memory

SW Software

TC Trusted Computing

TOE Target of Evaluation

TPM Trusted Platform Module

USB Universal Serial Bus

WP Work Package

D1.2 - Report on specifications and overall architecture

HINT D1.2 VII

List of Figures

Figure 1: Summary of HINT requirements ... 1

Figure 2: Solely PUF-based challenge-response protocol ... 5

Figure 3: PUF-based challenge-response protocol using signature functions 6

Figure 4: PUF-based challenge-response protocol using Diffie-Hellman variants 6

Figure 5: TC scheme for root of trust measurement ...14

Figure 6: TC scheme for root of trust measurement with infected processor14

Figure 7: Root of trust measurement with hardware integrity check14

Figure 8: Overview – Holistic integrity checking ..15

Figure 9: PUF-based trust architecture and ecosystem ..16

Figure 10: ID-Card IC Top level schematic including PUF module..18

Figure 11: HW Architecture of a PUF-Peripheral for an ID-card chip19

Figure 12: FE with PUF-based key generation ...20

Figure 13: FE with external injected key ...20

Figure 14: Syndrome Construction ...20

Figure 15: SCA-based architecture ...23

Figure 16: Overview Test Environment Setup ..25

Figure 17: Complete CTRL-FPGA design ...26

Figure 18: DUT Controller ..27

Figure 19: Test Environment and Tool-Chain ...28

List of Tables

Table 1: Security Problem Coverage ..11

Table 2: Security Objectives for the TOE coverage ..12

D1.2 - Report on specifications and overall architecture

HINT D1.2 Page 1 of 39

Chapter 1 Introduction

The aim of the HINT project is the study of novel schemes for checking that a system or a
device is genuine.

The counterfeiting or the infection by Hardware Trojans (HT) of Integrated Circuits (IC) can
apply to Application Specific Integrated Circuits (ASICs), Commercial Off-The-Shelf (COTS)
devices as well as to Field Programmable Gate Arrays (FPGA). In the HINT project, the
former ones (ASICs, COTS) are studied through the ID-card use case and the latter one
(FPGA) is studied through the PMR use case. Both use cases have already been introduced
in the deliverable D1.1 [REF 1].

Figure 1: Summary of HINT requirements

The requirements for these two use cases are categorized with regards to the three
overarching objectives pursued within HINT technologies:

 Integrity

 Authenticity

 Availability

These requirements allowed us to identify several relevant technologies pertaining to the
scheme developed in the HINT project. Part of the scheme was suggested in D1.1 [REF 1]

D1.2 - Report on specifications and overall architecture

HINT D1.2 Page 2 of 39

and we detail here the technical domains that are going to be investigated during the next
phases of the HINT project.

The core idea for the HINT project is to efficiently and securely measure some form of
“fingerprint” from a given IC, based on two technologies: PUF and SCA measurements. Even
if they differ in their nature, when combined, they complement each other to achieve IC
assurance and hence devices assurance.

Verifying IC trustworthiness can be done first of all as a post-manufacturing step to validate
conformance of the fabricated IC to the original functional and performance specifications but
this may not achieve a sufficient coverage. So the HINT project adds capability checking
after delivery of the product to the user, which implies “on-the-field” or “at-time-of-use”
checking.

Hence the architecture stemming from the requirement of D1.1 needs to prepare this "after
delivery checking" capacity. New scenarios demonstrating such capabilities developed in the
HINT project will be elaborated, pertaining to the “after delivery” trust in devices.

The two complementary technologies: PUF-based and SCA-based could have been
combined in a single application. Nevertheless due to their intrinsic nature, novelty and
complexity the HINT partners will demonstrate them separately. Furthermore due to these
differences in nature the approaches to build the trust architectures and the application
prototype will be quite specific to each of them.

This document is organized as follows. We first focus on refining specific security
requirements pertaining to the two use cases defined in D1.1 [REF 1]. This part shall be read
as a supplement of the security analysis of D1.1. Then the core of this document will be the
trusted HINT architecture definition following the two primary technologies identified for
performing authentication and integrity verification an IC. This chapter states the environment
needed to build each architecture and specifies the principles of that architecture. An
assessment analysis concludes each architecture description. The "HINT Application
prototypes" are then exposed with their main characteristics and their main challenges.

D1.2 - Report on specifications and overall architecture

HINT D1.2 Page 3 of 39

Chapter 2 HINT Use Cases Security Analysis

A security analysis of the two main HINT application scenarios “Unclonable ID-cards” and
“Professional Mobile Radio” has already been presented in Deliverable D1.1 [REF 1],
Sections 3.2 and 3.3 respectively. The scenarios were analysed following the well-
established methodology for Common Criteria security evaluations and through the mean of
Protection Profiles. The Section 2.1 gives a brief overview of Protection Profiles in the
context of HINT project. Accordingly, we described the main assets of an ID-card, as it is
deployed in the HINT usage scenarios, and outlined possible attack scenarios. These
analysis results can be used as a basis for specifying a Protection Profile for an ID-card with
PUF technology. The following Section 2.2 complements the analysis from the previous
deliverable. We analyse security aspects related to the integration of PUFs into ID-cards.
This includes on the one hand assets enabled by the deployment of PUF technology. On the
other hand, we consider security issues and vulnerabilities of the PUF implementation and
operation itself. Moreover, we give a general description, how to define a protection profile
for an ID-card product with integrated PUF-technology.

For the second HINT application scenario on PMR, the security analysis was also conducted
in accordance with the Common Criteria methodology, in this case in an even more rigid way
than for the ID-card scenario. As already explained in D1.1, HINT aims at preparing a
protection profile covering the new aspects of integrity and authenticity in the PMR context.
Therefore, we presented an extensive formal analysis for PMR in Deliverable D1.1. Section
2.2 in this document completes the analysis. We analyse the coverage of threats by
objectives as well as of objectives by selected Security Functional Requirements.

2.1 HINT contribution to Protection Profiles

In the context of secure devices development, especially (but not exclusively) for high-
security smart cards such as ID-cards, Protection Profiles are well established in the
Common Criteria methodology since many years now.

The notion of a “Protection Profile” has been introduced into the Common Criteria approach
as a kind of “generic Security Target”, embracing the security architecture of a group of
related product families such as smart cards. The developer designing product (a smart card
or a PMR handheld) and in charge of writing the corresponding Security Target can then
reference the associated Protection Profile from which he derives his own security
requirements.

Not only does this approach ease the burden of writing a Security Target for the developer,
but it also facilitates comparison of products from different vendors with regard to their
security architecture.

Protection Profiles (in contrast to vendor-specific Security Targets) are public documents,
and often bear a certificate of their own. Examples for existing and commonly referenced
Protection Profiles pertaining to smart cards or PMR handhelds with a high security
evaluation assurance level are listed below.

 Protection Profile for smart cards with signature creation [REF 2]. Here, an on-board

key generation constitutes one of the most attractive applications, since each card

holder can be certain that his or her signing key is never known to any other entity

than his /her card (even not known to the card issuer, or to any issuing authority, not

even to the holder herself!).

D1.2 - Report on specifications and overall architecture

HINT D1.2 Page 4 of 39

 Protection Profile for smart card based travel documents [REF 3].

 Protection Profile for ICs Platform [REF 4]. This is a Protection Profile for hardware

vendors. In light of the PUF technology, such a profile would have to be augmented

by security aspects and vulnerability analysis regarding the safe implementation of

PUFs. SCA based detection of HT could also be added to such a Protection Profile.

 Java Card Protection Profile [REF 5].

 Cryptographic Modules, Security Level "Enhanced" [REF 6]. This Protection Profile is

relevant for a cryptographic module embedded in a PMR handheld and could be

augmented by security aspects related to safe implementation of PUFs and the SCA-

based detection of HT.

In September 2012 the CC Management Committee published a CCRA (Common Criteria
Recognition Arrangement) vision statement embracing the concept of “Collaborative
Protection Profiles” [REF 7]. The aim of this initiative is to facilitate mutual recognition of
Protection Profiles (hitherto written and certified on a national level) and harmonize the
development and certification process. Mutual recognition of smart card products (and smart
card Protection Profiles) is a well known issue and will become increasingly difficult as the
assurance level of mutually recognized products is lowered to EAL (Evaluation Assurance
Level) 2. Hence, the concept of Collaborative Protection Profiles paves the way for the
development of products with a high security level (like EAL 4 or EAL 5) in the Common
Criteria framework of certification.

As a consequence, for anyone intending to write a Protection Profile we recommend to
envisage the concept of a Collaborative Protection Profile, especially for ID-card products
with integrated PUF technology or PMR handheld with SCA-based HT detection.

2.2 Security Functions for the HINT ID-Card Use Case

2.2.1 Specification of Security Functionality enabled through PUF technology

For both applications envisaged in the HINT application prototype, i.e. PUF authentication
and PUF-based signature, the PUF deployment shall enable us to spare a cryptographic key
(authentication key or signature key) explicitly stored in a smart cards non-volatile memory.
Attacks on such a key which extract it from EEPROM of Flash memory (probing attacks,
invasive attacks, etc.) will then no longer apply as long as they rely on the key to be stored in
dedicated persistent memory.

2.2.1.1 Solely PUF-based Authentication of an ID-card

Authentication of an ID-card through PUF technology can be based on a challenge-response
protocol; with a strong PUF implemented in the smart card IC, processing challenges inside
the card IC and producing a response to be verified outside the card. An example for such a
PUF is an arbiter PUF allowing sufficiently many challenge bits. Authentication may
alternatively be achieved with a weak PUF by extracting a key and using it for whatever
authentication protocol is desired.

For secure authentication, it is state-of-the-art to use a cryptographic protocol which relies on
a secret key. Both symmetric and asymmetric authentication protocols exist, but in each case
the underlying secret key must be stored on the card in a secure manner. Such a key is
usually stored in non-volatile memory like EEPROM or Flash. Using a weak PUF, a
cryptographic key may be extracted (or embedded) into a template for subsequent use. In
case of a symmetric protocol (where both partners in an authentication need to share the

D1.2 - Report on specifications and overall architecture

HINT D1.2 Page 5 of 39

secret key), either an externally generated key could be embedded, or an extracted key
needs to be output by the ID-card in a secure environment during registration.

In case of authentication with strong PUFs no dedicated secret key will be embedded or
extracted. A simple protocol step would look like the following.

Figure 2: Solely PUF-based challenge-response protocol

Instead of the extraction of a dedicated key, a number of challenge-response pairs is
computed in advance and safely stored for later access by the verifier. In a certain sense,
this list would “replace” the secret authentication key, and thus would certainly constitute a
valuable asset. However, such a list would not be stored on the smart card, but maintained
on some server’s site, so it does not affect a smart card Protection Profile. On the other
hand, the robust generation of the response by the PUF constitutes an asset (to be treated in
the chapter concerning the security of the PUF itself). Moreover the safe output of the PUF
response is a security concern (for instance in terms of attacks aiming at a denial of service
through altering the correct PUF response prior to output).

2.2.1.2 PUF-Based Signature

Signature creation is one of the most essential applications for high secure smart cards.
Signatures are used for authentication of (signed) “documents” as well as for authentication
in the framework of challenge response protocols.

Digital signatures deploy asymmetric cryptography which means that the smart card contains
a private signing key which needs to be kept absolutely confidential in order to avoid a forger
to generate any signature on behalf of the legitimate key owner. This private signing key up
to now has usually been stored in non-volatile memory (EEPROM, Flash), possibly in an
encrypted or masked manner. Nonetheless, a variety of attacks exist trying to read out such
a key.

The PUF-based signature application envisaged for HINT will make use of extractors which
allow to safely “hide” such a key in a protected template, which is stored in the card’s
persistent memory instead of the signing key. This template is “locked” with a PUF-response
in a way that compromise of the template does not allow an attacker to retrieve the
embedded key without knowing a corresponding PUF response.

Some new security issues need to be considered in such a situation. To begin with, like in
the authentication application the secret signing key is never stored in non-volatile memory,
thus thwarting attacks aiming at reading out memory-cells from memory while a card is not
active. However, unlike for the authentication based on PUF challenge-response pairs, the
signing key does exist temporarily whenever it is extracted from the locked template using a
PUF response, when it is used in a cryptographic operation, loaded into registers, etc., until
the moment of its safe deletion from RAM. Hence, the security requirements of an associated
Protection Profile need to be carefully examined with regard to their applicability to the PUF-
based signature process.

D1.2 - Report on specifications and overall architecture

HINT D1.2 Page 6 of 39

Another new aspect is the extraction process, which might itself offer further vulnerabilities
that need to be treated by an augmentation of security objectives and requirements. This
process affects both the PUF operation and the resulting extracted signing key.

Finally, the process of PUF response generation itself (needed to “open” the locked key-
template) is covered in the section dealing with PUF security (see section 2.2.2).

2.2.1.3 PUF-Based Authentication Making Use of Signature Schemes

In case all architectural components needed for the key extraction by means of a weak PUF
and for signature generation are available, it is also possible to make use of such an
extracted key and components for an asymmetric challenge-response protocol, as it has
been used in classical crypto systems. The difference compared to classical schemes lies in
the fact, that the “secret” does not need to be stored in non-volatile memory as long as the
semiconductor device is not powered.

Authentication based on signature generation relying on keys extracted from weak PUFs
look like the following.

Figure 3: PUF-based challenge-response protocol using signature functions

In general such authentication schemes using signatures may be based on any available
signature algorithm, may this be RSA, DSA, ECDSA or any other signature algorithm already
implemented in the ID-card software.

Using asymmetric cryptography reduces the effort for handling secrets tremendously, instead
of reading out a variety of responses that have to be kept secret over the life cycle of a PUF-
based product. The verifier only needs to use an authentic public key corresponding to the
PUF-based private key for her verification step of the protocol.

2.2.1.4 PUF-Based Authentication Making Use of Diffie-Hellman Variants

As an optimization of overhead usually present in standard signature algorithms some
schemes variants of the Elliptic Curve Diffie-Hellman (ECDH) key agreement protocol might
be used. Such protocol variants provide extremely efficient prover actions shifting big
portions of the calculation effort to the challenger/verifier side.

Figure 4: PUF-based challenge-response protocol using Diffie-Hellman variants

D1.2 - Report on specifications and overall architecture

HINT D1.2 Page 7 of 39

Again in such case the verifier only needs an authentic public key corresponding to the
private key generated from the PUF response.

2.2.2 Security Features concerning the PUF itself

While the preceding section dealt with security aspects implied by the deployment of PUF
technology (replacement of an authentication key by PUF challenge-response pairs, or
extraction of a private signing key instead of persistent storage), this section will cover
security issues and vulnerabilities of the PUF implementation and operation itself. Due to the
different nature of PUFs to be implemented for the two selected applications for the ID-card
use cases they will be treated separately in two sub-paragraphs.

For typical cryptographic algorithms, analytic attacks will usually not be dealt with in a
Protection Profile, since the choice of algorithm and configuration parameters (like key-
lengths) is deferred from guidelines or other regulation. The implementation of a dedicated
cryptographic hardware supporting computation however is usually covered by IC Protection
Profiles.

For a PUF design, many aspects are intrinsically hardware-design dependent, and no
standards are known as yet (comparable to cryptographic standards like DES, AES, RSA,
ECDSA, etc). Therefore, an associated Protection Profile (and much more so a derived
Security Target for a specific product) will need substantial amendments covering hardware
security aspects of a PUF implementation. In light of the very different physical nature of
PUFs, it appears to be a challenging task to however summarize their properties into a
common Protection Profile.

2.2.2.1 PUF-Authentication of an ID-card

A number of attacks on strong challenge-response PUFs are already known in the literature,
and research on such attacks is also part of the HINT project.

Most attacks on PUFs aim at extracting the challenge-response behaviour of a PUF, allowing
to predict a PUF’s response for a hitherto unprocessed challenge, or in the extreme case
enabling the attacker to model the complete PUF enabling him to compute a response for
many (if not all) arbitrary challenges.

Another motivation for an attacker might be to disturb the PUF with the intention to make it
create false (invalid) responses aiming at a denial of service.

Attacks on strong PUFs may be roughly categorized as follows:

 Cryptographic attacks. This category of attacks is comparable in spirit to crypto-

analytic attacks on cryptographic algorithms. The attacker may use challenge-

response pairs (possibly with the option of choosing challenges, or just being able to

monitor them), but does not use any hardware fault intrusion or side-channel

observation. In other words, he treats the device at hand as a purely logical operator.

Examples for such attacks with regard to PUFs are machine-learning attacks.

 Side-channel observation. Here, the attacker is allowed to monitor the PUF operation

of a specific device during its operation. Such attacks may be both passive (e.g.

measuring electromagnetic emission) and invasive (e.g. probing buses) from a

physical point of view. Usually, information obtained through side-channel

observation will extremely facilitate subsequent analysis (or even make it

superfluous).

 Fault intrusion. Here the attacker has the ability to introduce intentional misbehaviour

into the PUF operation, or manipulate PUF cells. Although a faulty response may be

D1.2 - Report on specifications and overall architecture

HINT D1.2 Page 8 of 39

a direct aim of an attacker, usually such fault intrusion aims at facilitating subsequent

analysis benefitting from dedicated ill-formed responses.

In case that post-processing (like error correction) is used prior to release of the response,
vulnerabilities of the post-processor also needs to be taken into account. Depending on the
type of implementation (dedicated HW or SW) this aspect may need to be deferred to an OS
Protection Profile (see Section 3.3.4).

2.2.2.2 PUF-Based Signature

The attack categories “Side-channel observation” and “Fault intrusion” described in the
previous paragraph also apply to the PUF-based signature application. However, due to the
use of a Fuzzy Extractor a “weak” PUF may be deployed in place of a strong PUF.

On the other hand, in this application post-processing appears to be mandatory in order to
enable robust retrieval of an embedded signing key. Useful private signing keys will raise the
need for an embedded key of at least few hundred bits length (like for ECDSA). Hence,
robustness of the PUF response as well as the capacity of the post-processing step will
constitute a particular asset to be covered by a Protection Profile.

In addition to the attacks to be considered in the previous section, the secure operation of the
Fuzzy Extractor constitutes an asset, along with the secret key retrieved from it. In particular,
the extractor must be implemented in a way not admitting the leakage of information of either
the embedded key or the processed PUF response. Unlike for the challenge-response
application, here the secrecy of the PUF response itself constitutes an asset, because it may
help an attacker to unlock the protected template which is stored in the card’s persistent
memory. In order to deal with this situation, one may:

 Consider the PUF response as a secret itself. Notice the difference to the application

of Fuzzy Extractors for biometric templates, where a biometric feature (like a

fingerprint) cannot be considered as secret, whereas a PUF response of an

embedded PUF offers at least the chance to keep it confidential.

 Guarantee that only “valid” PUF responses are fed into the extractor. This might be

regarded – in a very vague sense – as the analogue of a “liveliness control” in

biometric applications. Since biometric features need to be treated as public, it is

essential to guarantee in each verification process that a real “living” trait has been

processed and not a fraudulent copy (be it physical or even logical). It is rather

unclear though, how such a “liveliness control” could be realized.

2.2.3 HINT contribution to Protection Profiles for unclonable ID-cards

Within the HINT project, it is not intended to write a complete Protection Profile for
unclonable ID-cards for a number of reasons. To begin with, there exist already (see the list
of examples above in §2.1) a number of established Protection Profiles for ID-cards, so the
design of a Protection Profile by itself does not constitute a valuable research topic.
Moreover, the introduction of PUF technology into an ID-card will rather augment an existing
Protection Profile, whilst it seems more appropriate to consider the amendments instead of
writing a complete Protection Profile. Finally, a comprehensive Protection Profile largely
depends on the nature of the ID-card (for example a health card, an electronic passport,
etc.), which will not be a focus of HINT, anyway.

For the two unclonable ID-cards we have in mind with the HINT project, namely the PUF-
Authentication and the PUF-based signature, the security architecture as drafted in an
existing Protection Profile (depending on the final product into which the demonstrated

D1.2 - Report on specifications and overall architecture

HINT D1.2 Page 9 of 39

protocols shall be embedded, like for instance an electronic passport) will have to be
augmented by two categories of functions, introduced above namely:

1. Security aspects enabled through PUF technology. – This category shall describe

alternative or additional security functionality enabled through PUF technology.

2. Security aspects of the PUF implementation itself. – This category shall describe the

secure implementation of the PUF itself, vulnerability of its design, and how to thwart

attacks against the PUF implementation/operation.

Since each application involves HW as well as SW development, it is expected that
Protection Profiles for both IC products as well as smart card OS need to be augmented
accordingly. The security of the PUF implementation clearly focuses on IC-production,
though PUF operation (e.g. key extraction) might also be implemented by dedicated SW.

2.3 Security Analysis of the PMR Use Case

2.3.1 Security Analysis

The security analysis was presented in a style of a Protection Profile in D1.1 Section 3.3
[REF 1] to take benefit of its reusability as explained in Section 2.1. We give here a few
complement pertaining to PMR use case within HINT scheme. The complete definitions of
the following threats, organisational security policies and assumptions can be found in D1.1
Section 3.3 [REF 1].

It is important to notice that the insertion of a HT can have many different impacts so our
analysis shall be very general and cannot focus on a specific purpose like authentication and
signature similarly to what is done in previous Section 2.2.

We shall also point out that many techniques pertain to HT detection but that in HINT project
we only target SCA-based detection of HT. The relevance of SCA for this purpose is
explained in Section 3.4.5.

2.3.1.1 The Threats

The previous analysis presents a list of threats:

 T.Denial-of-Service

 T.Information_Leakage

 T.Malfunction

 T.Phys-Tamper

Here we add a new threat to complete the ones already given:

T.Sensitive_Data_Alteration
For instance a HT or other event or action can modify internal nodes or memory contents of
the circuit where these data are stored or processed. All the changes of sensitive data such
as keys, passwords, PINs or user data have major impacts on the services delivered by the
terminal.

D1.2 - Report on specifications and overall architecture

HINT D1.2 Page 10 of 39

2.3.1.2 The Organisational security policies

In D1.1 we already list organisational security policies:

 P.Safe_Programming

 P.Safe_Personalization

 P.Key_Function

Here we add a new organisational security policy to complete the ones already given:

P.Audit_HT

The operational product is submitted to a regular “on-the-field” or “at-time-of-use” check to
audit for HT detection.

2.3.1.3 The Assumptions

The assumptions in D1.1 describe the security aspects of the environment in which the PMR
products will be used or is intended to be used. They are:

 A.PMR_Manufact

 A.PMR_Delivery

 A.Pers_Agent

2.3.1.4 The Security Objectives

The security objectives for the PMR products were stated in D1.1. They are:

 OT.AC_Perso

 OT.Data_Int

 OT.Data_Conf

 OT.Prot_Abuse_Func

 OT.Prot_Malfunction

 OT.Prot_Availability

 OT.Prot_Inf_Leak

 OT.Prot_Phys_Tamper

 OT.Hardware_Integrity

Here we add a new security objective to complete the ones already given:

OT.Audit_HT

Tools available “on-the-field” or “at-time-of-use” provide detection of Hardware Trojans.

D1.2 - Report on specifications and overall architecture

HINT D1.2 Page 11 of 39

2.3.2 Coverage

According to this description we can define the coverage of threats by objectives and
afterward of objectives by selected Security Functional Requirements (SFRs). This is given
in next two Tables.

 A
.
P

M
R

_
M

a
n
u
fa

c
t

A
.
P

M
R

_
D

e
liv

e
ry

A
.P

e
rs

o
_
A

g
e
n

t

T
.D

e
n
ia

l-
o

f-
S

e
rv

ic
e

T
.I
n
fo

rm
a
ti
o
n
_

L
e
a
k
a

g
e

T
.S

e
n
s
it
iv

e
_
D

a
ta

_
A

lt
e
ra

ti
o

n

T
.P

h
y
s
-T

a
m

p
e
r

T
.M

a
lf
u
n
c
ti
o
n

P
.S

a
fe

_
P

ro
g
ra

m
m

in
g

P
.S

a
fe

_
P

e
rs

o
n
a
lis

a
ti
o
n

P
.K

e
y
_
F

u
n
c
ti
o
n

P
.A

u
d

it
_
H

T

OT.AC_Perso X X

OT.Data_Int X

OT.Data_Conf X

OT.Prot_Abuse_Func X X

OT.Prot_Malfunction X

OT.Prot_Availability X

OT.Prot_Inf_Leak X

OT.Prot_Phys_Tamper X X

OT.Hardware_Integrity X X

OT.Audit_HT X

OE.PMR_Manufact X X

OE.PMR_Delivery X X

OE.Personalisation X

Table 1: Security Problem Coverage

D1.2 - Report on specifications and overall architecture

HINT D1.2 Page 12 of 39

SFR

O
T

.A
C

_
P

e
rs

o

O
T

.D
a
ta

_
In

t

O
T

.D
a
ta

_
C

o
n
f

O
T

.P
ro

t_
A

b
u
s
e

_
F

u
n
c

O
T

.P
ro

t_
M

a
lf
u
n
c
ti
o
n

O
T

.P
ro

t_
A

v
a
ila

b
ili

ty

O
T

.P
ro

t_
In

f_
L

e
a
k

O
T

.P
ro

t_
P

h
y
s
_
T

a
m

p
e
r

O
T

.H
a
rd

w
a
re

_
In

te
g
ri
ty

O
T

.A
u
d

it
_
H

T

FIA_UAU.2\User

User authentication before any action
X X X X X

FIA_UID.2\User

User identification before any action
X X X X X

FCS_COP.1/Data

Cryptographic operation
 X X

FCS_COP.1/Voice communications

Cryptographic operation
 X

FCS_COP.1/Integrity

Cryptographic operation
 X X X

FPT_PHP.2

Notification of physical attack
 X X

FDP_ACC.1

Subset access control
 X X

FMT_MSA.3

Static attribute initialization
 X X

FMT_MSA.1

Management of security attributes
 X X

FDP_ACF.1

Security attributes based access control
X X X

FMT_SMF.1

Specification of management functions
 X X

FMT_SMR.1

Security roles
X X X X

FAU_GEN.1

Audit data generation
 X

FAU_GEN.2

User identity association
X X

FAU_ARP.1

Security alarms
 X X X

AU_SAA.1

Potential violation analysis
 X X X

Table 2: Security Objectives for the TOE coverage

D1.2 - Report on specifications and overall architecture

HINT D1.2 Page 13 of 39

Chapter 3 HINT Architecture

In this chapter, we present the architecture of the general system that will be developed in
the HINT project. The architecture definition is mainly based on the use case requirements
for the HINT application scenarios as well as on the analysis of the core technologies which
are within the focus of the project, both described in deliverable D1.1. Before introducing the
architecture, we first relate in Section 3.1 the HINT concepts to well-established Trusted
Computing principles. We thereby highlight how the project shall enhance the current state-
of-the-art in that area. In Section 3.2, we give a general overview of the HINT system that will
be developed. We outline the main objectives for this HINT system and clarify several
essential terms in the description of objectives and requirements.

As a matter of fact, the HINT architecture relies on the two core technologies considered in
the project, Physically Unclonable Functions (PUF) and Side Channel Analysis (SCA).

Section 3.3 describes the architecture of the subsystem based on PUFs. The section first
introduces a trust architecture for the application example of an ID-card featuring integrity
checks based on PUFs. Trust relationships with regard to PUF technology are described for
all involved stakeholders as they were already identified in D1.1. Further subsections of
Section 3.3 outline the hardware architecture for a secure device with a PUF module – again
along the example of a high-security smart card – and software components required for the
post-processing of PUF data. Finally, a first analysis of the specified architecture with
regards to reliability and vulnerability is presented.

Section 3.4 describes the SCA-based architecture. We first outline the basic structure of an
SCA-based integrity/authenticity check mechanism and consider different possible variants
for realizing the main components, e.g. a passive and an active approach for realizing an
SCA-based detection component. The following two subsections introduce the general
concept and describe the measurement equipment and hardware platform that will most
likely be used for prototyping the SCA-based approach as well as the tool chain. Based on
these specifications, Subsection 3.4.4 analyses the architectural requirements. Finally, we
present a first feasibility analysis for the detection of Hardware Trojans with SCA. The
analysis is based on a state-of-the-art review and will be refined during the course of the
project, based on the realization and evaluation of the application prototypes.

3.1 HINT & Trusted Computing

The HINT scheme shall offer a possibility to enhance current Trusted Computing (TC)
principles. Current TC schemes are based on the presence of a secure element called
Trusted Platform Module (TPM) which for example, has the ability to verify the integrity of the
software being executed, starting with the boot code that is then used as root of trust for the
rest of the software hierarchies. All the TC architecture’s trust relies on the hardware used.
With the HINT technology, one could for example check the integrity or authenticity of the
hardware before executing the rest of the TC scheme for (software) trust establishment.

For example, in the case where a TPM is used to attest the integrity of a system’s boot code
(and hence for the measurement of the ‘core root of trust’), the TC procedure is illustrated in
Figure 5.

In this case, an important security assumption is made: the chip/processor doing the Core
Root of Trust Measurement (CRTM) can be trusted. However, the CRTM could be corrupted
in such a way that even if an authorized boot code is uploaded, the CRTM is made to send to
the TPM a pre-stored correct “signature” or generate a signature corresponding to the pre-
stored digest of an authorized boot code (Figure 6).

D1.2 - Report on specifications and overall architecture

HINT D1.2 Page 14 of 39

TPM

Device Under Test

Memory Main processor

‘Core Root of Trust for

Measurement’

System Power on

Boot code loaded

Signed digest of boot

code calculated

Verify signature

Signature verified

Boot code considered

as trusted is executed

TPM

Device Under Test

Memory Main processor

‘Core Root of Trust for

Measurement’

System Power on

Unauthorised Boot

code loaded

Trojan sends orginally

‘correct’ signature

Verify signature

Signature verified

Boot code considered

as trusted is executed

Figure 5: TC scheme for root of trust
measurement

Figure 6: TC scheme for root of trust
measurement with infected processor

In this scope, the HINT scheme could be used to verify the integrity/authenticity of the CRTM
upon Power On and hence provide the reader / docking station a means to decide whether to
proceed with the system’s boot or whether it is trusted or not (Figure 7).

TPM

Device Under Test

Memory Main processor

‘Core Root of Trust for

Measurement’ – CRTM

System Power on

Boot code loaded

Signed digest of boot

code calculated

Verify signature

Signature verified

Boot code considered

as trusted is executed

Host station

HINT scheme

Active or passive EM measurement

Detection (in CRTM) of

- A Hardware Trojan

- A counterfeited chip

- A functional clone

Figure 7: Root of trust measurement with hardware integrity check

D1.2 - Report on specifications and overall architecture

HINT D1.2 Page 15 of 39

3.2 System Overview

The scheme which shall be investigated in the HINT project shall allow “on-the-field” or “at-
time-of-use” integrity and authenticity verification of a ‘critical’ device. Actually, several
approaches and techniques shall be investigated and proposed resulting to some sort of
‘toolbox’ from which one (or a composition) of those approaches can be integrated by an end
user (secure systems integrator).

Figure 8: Overview – Holistic integrity checking

From now on, in this chapter, the ‘integrity’ aspect would include the ‘availability’ requirement
considering that a system which is no longer ‘available’ can be considered to have been
tampered with or to have been modified. This integrity aspect shall be covered by a study on
the detection of malicious hardware modifications of the DUT (or typically referred to as
‘Hardware Trojan detection’). The ability to verify the ‘identity’ of a given circuit, i.e.
performing hardware authentication, is covered by the study on the capability to reliably and
securely use Physically Unclonable Functions (PUFs).

One of the core characteristics of the proposed scheme shall be that it shall be “on-board”,
that is, the integrity/authenticity verification mechanism shall be done “at-time-of-use” in an
embedded mechanism, i.e. integrated into a reader or docking station with which the
targeted security device is communicating with. This concept of “on-board” shall be opposed
to evaluation/characterization schemes which are done in laboratory conditions with PCs
(having a lot of computing power and memory resources), sensors/probes which have no
limits such that cumbersome equipments like oscilloscopes, GPUs… can be used.

The two trust architectures are explained hereafter. They both imply an integrity/authenticity
verification “at-time-of-use” but due to the very nature of each technology the processes that
allows this checking appear to be very different for each other. This is detailed in each
architecture description in the following Sections 3.3 and 3.4.

3.3 PUF-based Architecture

In this section we will first describe the trust architecture of the environment of the PUF-
equipped ID-card and its application field. In a second step we will zoom into the hardware
architecture of the ID-card’s semiconductor chip. Further, as the PUF technology raises
challenges in order to handle noisy PUF responses for certain applications, different

D1.2 - Report on specifications and overall architecture

HINT D1.2 Page 16 of 39

constructions of Fuzzy Extractors – that are needed for post-processing of the raw PUF data
– are described. Concluding, a robustness and vulnerability analysis is presented.

3.3.1 Trust Architecture Specification

The trust architecture of a PUF-based system is basically specified by the relationship graph
of the stakeholders involved. The most straight forward approach is to focus on the
repeatedly performed application of the functionality that is provided by means of a PUF in
the field. This application would have two basic flavours, depending on what is performed,
whether it is a challenge-response protocol or a signature based protocol. Nevertheless in
both flavours the trust relationship – if being built on participation of the PUF – will include
two aspects:

a) It includes the trust of the verifier instance in the response/signature giving evidence that

the piece of hardware on which the protocol was executed is the very component that it

is intended to be and thus genuine.

b) Provided a cryptographic binding of the instance to an issuer – e.g. by means of a

certificate – the PUF-based protocol will give evidence to the verifier that the prover is an

authentic instance belonging to a cluster or family of instances being issued by this very

(eGovernment) institution.

A typical example for a PUF-based trust architecture in accordance with the HINT approach
is the following architecture for a PUF-enabled ID-card:

Figure 9: PUF-based trust architecture and ecosystem

Although the final goal in the use case environment is to be able to prove the integrity – in
this case genuineness – of the hardware on which an authentication or signature protocol is
based, the trust architecture of the overall system is more complex.

There are several involved entities that either have to be trusted or have to be able to prove
their own authenticity while processing the various steps needed over the life cycle of a PUF-
based secure device. In the following, we describe these entities and the trust relationships
along the example of a PUF-based ID-card.

D1.2 - Report on specifications and overall architecture

HINT D1.2 Page 17 of 39

IC Manufacturer

The semiconductor developer and manufacturer is the first coming into place when we follow
the live cycle of a PUF-based product. During manufacturing and testing, the characteristics
of the PUF have to be tested and helper data for later post-processing of PUF data at the
run-time of a PUF-based protocol have to be stored. Depending on the protocol and the type
of product, even key extraction (for symmetric systems) or public key generation (for
asymmetric protocols) might be necessary and proper handling of all these data and keys
have to be ensured by the hardware manufacturer. This also includes the protection of PUF
data against side-channel attacks later in the field by appropriate design measures. For the
trust relationship in the overall life cycle of the PUF-based product this usually means, that a
certified hardware manufacturer has to be chosen. For products certified according to the
Common Criteria scheme the evaluation process includes sites audits of the manufacturing
plant. Nevertheless, in the case of hardware genuineness to be proven it’s in the hardware
manufacturers own interest to perform proper handling of PUF-based data before delivery.

OS and Application Software Provider

Drivers and application software have to be able to process PUF-based protocols in a secure
way. For the trust relationships during the life-cycle, this means, that the software has to be
able to trust in the hardware and firmware routines provided by the hardware manufacturer
and to provide trusted routines and protocols for the issuing and personalization steps. Trust
in the software itself is supported by evaluation and certification performed by accredited
independent third parties. The software provider must be able to trust, that the PUF
functionality and helper data for protocols are authentic and for this purpose has to be
provided authentic data and methods to verify this authenticity, e.g. MAC or signature values
over public keys generated at the hardware manufacturer’s production site.

ID-card issuer

To provide flexible integration in existing systems including backward compatibility and to
allow involvement of secrets not depending on the hardware or software manufacturer it is
mandatory to use independent key sets for further steps in the life cycle. At personalization
stage the individual ID-card holder data is stored in the card IC’s non-volatile memory. Such
data may include name and address of the card holder for identification purposes, but also
properties and rights granted to the card holder. At this stage it is necessary to rely on the
fact that the hardware and software are trustworthy. Also the environment in which card
holder’s data is handled and pre-processed has to be trustworthy. In this step, a binding of
card holder’s data to the chip may be performed by means of a MAC or signature using the
PUF-based secret/private key. So it can be assured that same card holder’s data on any IC
other than the genuine one, may be detected and authentication based on identical card
holder data must fail if not performed on the IC bound to this card holder during the issuing
step.

At this stage, also binding of biometric data to the IC may also be performed. Not only logical
and administrative personal data, but also biometric data of the ID-card holder can be stored
in the ID-card’s IC. Authenticity of such biometric data may be provided by a certificate of the
issuing instance, usually including a signature over the biometric reference data for the
person holding the ID-card.

By this all means can be provided to later allow in-the-field verification of both the identity of
the card holder as well as the genuineness of the ID-card used for proving this very identity.

Verification in the field

Any verifier in the field is running a PUF-based protocol to examine whether the identity of a
given person is authentic and the means of verification – i.e. the ID-card itself – is

D1.2 - Report on specifications and overall architecture

HINT D1.2 Page 18 of 39

untampered with and genuine. After such verification, the verifying instance or service can
trust that the card holder is exactly the one he or she claims to be and that the ID-card is the
one representing this card holder with his or her associated properties and rights. If
asymmetric cryptography is implemented throughout the various steps of the protocol, the
verifying instance itself does not need to store a secret. Thus any machine being able to
communicate to the ID-card may verify the identity of the card holder, as long as it has
access to authentic public keys and the possibility to verify this authenticity. This is usually
handled by using a certificate infrastructure, wherein each certificate corresponding to a
private key of a card contains the appropriate public key and a system signature over that
card public key.

3.3.2 Hardware Architecture Specification of the ID-Card Semiconductor
Device

A possible schematic of a PUF-based secure device – again using the example of an ID-card
IC – is shown in Figure 10. Besides the classical components of state-of-the-art ID-card ICs,
like micro controller unit for program code execution, volatile and non-volatile memory to
store code, data and peripherals, crypto-modules for symmetric and/or asymmetric
cryptographic functions as well as interface modules for contact-based and contactless
communication, a dedicated HW-PUF-module is depicted. To protect the PUF responses
and especially private keys derived from the PUF during execution from side-channel or fault
attacks, the PUF module has to be integrated in the overall security concept of the ID-card IC
and all measures like bus encryption and fault detection have to be in place and activated.

Figure 10: ID-Card IC Top level schematic including PUF module

If we zoom further into the PUF module on the ID-card chip we will specify its necessary sub-
components:

 The actual PUF cell array

 The error correction circuit

 Dedicated non-volatile memory (NVM) for helper data to be used during error
correction

D1.2 - Report on specifications and overall architecture

HINT D1.2 Page 19 of 39

 The key extraction component

 The PUF module control finite state machine (FSM)

 The bus interface to the peripheral bus

Figure 11 shows an overview over the PUF module’s internal sub-components.

Figure 11: HW Architecture of a PUF-Peripheral for an ID-card chip

As one of the focus topics inside the HINT project is – besides the novel cell-concepts which
will be worked on in WP2 and described in Deliverable D2.1 – defined by research on the
post-processing of the raw PUF data, i.e. error correction and key extraction, we next
elaborate on the error correction and key extraction part of the architecture.

3.3.3 Helper data schemes needed for Post-Processing of PUF Raw Data

One of the key challenges of applications using PUFs is to handle the existing noise caused
by physical process variations. Further it has to be assured that for applications where a key
is derived from the PUF, the generated key fulfils the required properties for the underlying
application (e.g. length, distribution, entropy, etc.). Therefore a scheme has to be
implemented which on the one hand addresses the need of error correction and on the other
hand supplies suitable extraction. As described already in D1.1 [REF 1], the so-called Fuzzy
Extractors (FE) exactly satisfies this need. A Fuzzy Extractor is a primitive that allows the
extraction of uniformly random strings from a non-uniform source in a noise-tolerant way
[REF 31]. We will use the Fuzzy Extractor construction in two ways: embedding externally
generated keys, and deriving keys from the PUF response itself. For the second application,
a noticeable simplification exists, known as the syndrome construction [REF 8].

Code-Offset Construction

The code-offset construction can be applied in two ways, depending on whether an external
key is embedded or if the key is derived from the PUF response itself. In both cases helper
data HD is created by calculating the XOR combination of a reference response R and a
codeword C, which is needed later in the recovery procedure to re-calculate the key. The
figures below illustrate the two cases; on the left with the key derived from the PUF response
directly and on the right with an external embedded key.

D1.2 - Report on specifications and overall architecture

HINT D1.2 Page 20 of 39

Figure 12: FE with PUF-based key generation Figure 13: FE with external injected key

Note that embedding an external key has the advantage of being able to use any key
structure (this is of particular relevance in case a key is calculated in a specific manner and
not merely a random bitstring). Also, the distribution of the key space is entirely independent
from any distribution of the PUF responses (which might not be uniformly distributed, for
instance).

On the other hand, extracting a key from a reference PUF response R allows to use the
Syndrome Construction, a simplification which allows storing only the syndrome of R as
Helper Data instead of storing the entire XOR sum of R with a codeword C.

Syndrome Construction

In this construction, the PUF response R is basically multiplied by the parity check matrix of a
previously defined error-correcting code. The output is defined as helper string HD. To
recover the PUF response R, a noisy response R’ is multiplied by the parity check matrix to
obtain the syndrome of R’. Since no codeword C is retrieved in this case, the syndrome
construction cannot be used for the key embedding application.

Figure 14: Syndrome Construction

Depending on the error rate of the PUF responses, a suitable Error Correcting Code can be
chosen. One approach is to choose a combination of two codes, as proposed in [REF 30].

3.3.4 Assessment through robustness and vulnerability analysis

Reliability

We make a distinction between long-term and short-term reliability, referred to as aging and
repeatability respectively. For the former category, degradation of electrical component
changes the PUF behaviour over time. Electromigration in interconnects and
negative/positive bias temperature instabilities and hot carrier injections in CMOS transistors

D1.2 - Report on specifications and overall architecture

HINT D1.2 Page 21 of 39

are responsible for this. Careful circuit design might help: it is recommended to avoid high
electric fields. Also one can introduce an 'idle' state, disconnecting PUF and power supply
most of the time. Additional chip area is required for this solution however.

Repeatability imperfections are caused by internal device noises. The distinction between
variability and noise is essential. Both cause deviations with respect to the nominal
behaviour. Measurements of structural variability, originating from manufacturing processes,
are reproducible. One can state that they are defined by spatial distributions (and
orientations) of individual molecules of the solid materials. Noise however is a non-
reproducible temporal phenomenon. Generally speaking, in electronic circuits, both variability
and noise are undesired. PUF circuits measure variability, but are bothered by noise as well,
as it reduces the repeatability.

Both variability and noise are technology dependent. They remain major design and
manufacturing challenges, especially while downscaling dimensions according to Moore's
law. Random Dopant Fluctuation and Line-Edge/Width Roughness are important sources of
variability for CMOS devices [REF 12]. White thermal noise and 1/f noise affect the CMOS
channel current [REF 11]. Interconnects are affected by Line-Edge/Width Roughness and
white thermal noise too.

Environmental deviations worsen the repeatability problem. The PUF chip environment is
mostly defined as (but not limited to) the outside temperature and the supply voltage. In the
ideal case, PUFs operate in a constant nominal environment. Note that internal device noise
is not avoidable as opposed to environmental deviations. Thermal effects are always
present, as PUFs typically operate at room temperature and not at absolute zero
(−273.15°C).

Repeatability issues are challenge-response pair (CRP) dependent. In every PUF, analogue
information is digitalised in one way or another, always including some form of thresholding.
Consider for instance the arbiter circuit in an arbiter PUF, outputting a '0' or '1' response
depending on which of its two inputs detects a rising edge first. CRPs with a small nominal
time difference between the rising edges, are easily affected by noise [REF 10]. CRPs
corresponding to large time differences on the other hand, tend to be very repeatable. Similar
mechanisms cause the CRP dependency for other PUFs.

For strong PUFs, employed in a CRP-based authentication application, repeatability is
probably less of an issue. When comparing an (e.g. 128 bits) response with its enrolled
database equivalent, one can accept a specified amount of erroneous bits. For weak PUFs
however, there is a zero tolerance as secret keys are supposed to be perfectly reproducible.
Error correcting codes (ECC) like BCH are typically employed, as part of a Fuzzy Extractor
[REF 8].

An alternative for ECCs has been proposed in [REF 14]. The conventional paradigm of using
public challenges to generate secret PUF responses is reversed. The scheme exposes
response patterns and keeps secret the particular challenges that generate response
patterns. The key is assembled from a series of small (initially chosen or random), secret
integers, each being an index into a string. A newly repeated PUF output string is searched
for highest-probability matches with the stored patterns, re-generating every index.

The less repeatable a PUF is, the larger the hardware overhead of its accompanying ECC
shall be. Two fundamentally different approaches are used to minimize the ECC overhead,
although they both introduce hardware overhead somewhere else. Finding the global
optimum is a difficult exercise. First, one can indicate non-repeatable CRPs as invalid.
Consider for instance an SRAM PUF, where the local mismatch of each memory cell
generates a nominal '0' or '1'. As a post-manufacturing step, one could mark all unstable cells
(small mismatch so that thermal noise impact is relatively large). Additional cell testing and
bookkeeping circuitry is required.

D1.2 - Report on specifications and overall architecture

HINT D1.2 Page 22 of 39

A second approach stabilizes CRPs to a 'golden' reference. Consider for instance a ring
oscillator PUF where each column of inverters (covering all oscillators) can be powered by
one out of two supply voltage levels [REF 12]. By selecting an appropriate voltage
configuration for each CRP, the response is guaranteed to be repeatable, even for changes
in outside temperature.

Vulnerability

The security requirements differ depending on whether we need a ‘weak’ or ‘strong’ PUF. For
weak PUFs, it is imperative to keep the responses on chip, just as the secret keys to which
they are post-processed. Hardware attacks (invasive, through side channels or via fault
injection) should be taken into account. PUFs are often assumed to be resistant against the
first category. One can argue that invasion damages the physical structure and hence also
the PUF. Experimental evidence is generally lacking however, except for the coating PUF
[REF 19]. Electromagnetic radiation is an exploitable side channel for ring oscillator (RO)
PUFs [REF 15]: with an antenna one can perform semi-invasive measurements of individual
ring oscillator frequencies. In addition to PUF circuits, Fuzzy Extractors might leak side-
channel information as well [REF 16].

For strong PUFs, CRPs can be obtained by anyone. The security relies on the
unpredictability of the CRP’s behaviour. It should be infeasible to construct a clone via a
mathematical model. Modelling through Machine Learning (ML) algorithms, given a training
set of CRPs, is a major threat. High modelling accuracies might be obtainable through ML
techniques like support vector machines and artificial neural networks. Algorithms
automatically learn the input-output behaviour by trying to generalize the underlying
interactions. The more linear a system is, the easier it is to learn its behaviour.

The arbiter PUF, which quantifies the variability of gate delays, shows additive linear
behaviour making it vulnerable to modelling attacks. In the paper proposing arbiter PUFs as
a security primitive, ML was already identified as a threat [REF 13]. In the latter paper, the
authors reported a modelling accuracy of 97% for their 64-stage 0.18um CMOS
implementation. Similar results were obtained for a more recent 65nm implementation, also
having 64-bit challenges [REF 32]. Variants of the arbiter PUF which introduce additional
non-linearity (XOR, feed-forward, lightweight secure) provide more resistance but can still be
modelled [REF 17]. Glitch PUFs, which are delay-based too, contain weak challenges
leading to almost no glitches [REF 18]. As a consequence, those CRPs tend to be rather
predictable.

Hardware attacks on strong PUFs should be considered too, as they can facilitate modelling.
Recently, repeatability imperfections of PUF responses have been identified as a threat [REF
10]. CMOS device noise renders a significant fraction of the CRPs unstable, hereby
providing a side channel for modelling attacks. As a proof of concept, 64-stage 65nm arbiter
PUFs have been modelled as such, without utilizing any ML technique, with accuracies
exceeding 97%. The same principles might be recyclable for attacking other strong PUFs.

So-called controlled PUFs enhance the security of strong PUFs via additional hardware [REF
9]. In this case, response bits are post-processed using a Fuzzy Extractor. Cryptographic
hash functions are non-invertible and modelling vulnerabilities of the CRP behaviour are
hence hidden. Also, one can pre-process the challenges with a cryptographic hash function
to counteract chosen-challenge attacks. However, the use of controlled PUFs poses two
major problems. First, the increased hardware footprint undermines the potential of strong
PUFs for resource constrained applications. Second, the additional building blocks might be
vulnerable to hardware attacks.

D1.2 - Report on specifications and overall architecture

HINT D1.2 Page 23 of 39

3.4 SCA-based architecture

3.4.1 Trust Architecture specification

The basic structure of the SCA-based integrity/authenticity check mechanism is illustrated in
the following figure:

Figure 15: SCA-based architecture

The Measurement Tool shall consist of equipment for measuring the side channels from the
Device Under Test (DUT). Note that the side channel under investigation shall be either the
power consumed by the DUT or the ElectroMagnetic (EM) radiation which is measured by
adapted probes. In order of importance, EM measurements shall be our primary focus but if
for some reasons, for example when trying to “embed” the whole scheme or if for example
the DUT emits radio signals which might render EM measurements impractical, we find out
that EM measurement is impractical or ineffective, the power consumption side channel shall
be thoroughly investigated in order to have more efficient measurement tools.

The Holistic Tool for Information Extraction (HTIE) shall incorporate signal processing
and storage tools. The information extraction procedure could include approaches like
template based procedures, statistical correlation-based calculations, code execution
profiling… The extracted information shall allow the IAS to detect a pre-defined set of
hardware Trojans (not all hardware Trojans would be detectable). We may also try to see to
what extent the SCA-based approach can help to identify or detect a counterfeited/cloned
product.

The stability of the HTIE with respect to environmental changes or depending on the use
cases shall also be investigated.

The Integrity / Authentication Scheme (IAS) should primarily implement integrity checking
through the detection of HW Trojans.

The first approach for the SCA-based detection shall be passive, i.e. the system shall only
observe what the device under test is doing under normal operating conditions and shall
have no means of communicating with the DUT.

A second approach for the SCA-based detection shall be an active one where the DUT is
asked/made to perform a particular operation or to emit a particular signal that shall allow the
detection scheme to “make its decision”. It seems easier to detect HT when mastering the
operation of DUT than if it operates freely without any control. For example

 The DUT could be reset for the test.

 The environmental operating conditions of the DUT could be brought to particular
ranges.

 The DUT could be asked to execute a particular/characteristic set of instructions or
operations.

D1.2 - Report on specifications and overall architecture

HINT D1.2 Page 24 of 39

 The DUT could be asked to process particular data.

 Some hardware parts of the DUT could be activated or deactivated on purpose, like
for example a PUF or a sensitive part of the DUT.

Adapted ‘protocols’ shall be studied for the active SCA-based detection when relevant. For
example, such protocols shall implement ways to prevent say replay attacks, man-in-the-
middle attacks… between the detection scheme and the DUT. The protocols shall also
implement reaction strategies in case Trojans, counterfeits or clones are detected or
“suspected”. Such strategies shall provide a way to manage the false-positives/negatives
based on the ‘limits’ of the detection scheme or the detection scheme’s stability with respect
to environmental or use-cases’ conditions while assuring high degrees of trust and usability
of the DUT.

The on-board/‘embedded’ factor: Note that all the technical choices that shall be made for
the measurement tool, HTIE or the IAS shall take into account the fact that the ultimate goal
is to have this scheme ‘on-board’ or ‘embedded’ to allow “on-the-field” or “at-time-of-use”
checking as explained in Section 3.2. A two-step approach shall be used to investigate about
the numerous aspects of the SCA-based integrity/authentication scheme:

 First, the tools and concepts shall be implemented for, tested and validated in
laboratory conditions (while still having in mind that we will later ‘embed’ everything).

 Then, we shall study if and how the implemented schemes can be tailored to fit the
requirements for being ‘on-board’, some of which would be:

o Signal (EM or Power) acquisitions shall be done by on-board analog-to-digital
converters and signal processing by on-board Digital Signal Processors
(DSP). Several such tools are available off-the-shelf from providers like
Tektronix for example with different sampling rates, bandwidths etc. The best
suited tool(s) shall be investigated.

o The HTIE shall be run on an embedded chip with limited computing power, but
might also take advantage of the fast DSPs often present in such systems.

o Embedded systems usually have limited memories whether it is for handling
data during computations (RAM) or for storing templates, measured curves
etc (NVM – although here this should not be a blocking point with the
increasing density of NVMs such as Flash memories).

o The ‘time’ available for doing the integrity/authentication checking shall also
be an important parameter to take into account. In laboratory conditions, we
could have hours/days for performing the verification. In the case of a PMR,
the latter may be connected to the docking station for only a few
minutes/hours. For a smart-card we are more on the second time-scale.

3.4.2 Technical specification of the platform

The architecture that shall be studied for the SCA-based solution is based on the SASEBO
board environment actually designed for Side-Channel Attacks but with the right features for
HT insertion and detection. The measurement tools are here standard laboratory tools (see
section 3.4.3). A high-level view is illustrated in Figure 16.

D1.2 - Report on specifications and overall architecture

HINT D1.2 Page 25 of 39

Figure 16: Overview Test Environment Setup

The SASEBO development board embedded two XILINX FPGAs: a Virtex-5 for the DUT and
a Spartan-3 for the control interface (CTRL-FPGA). Both FPGAs are connected with a 38-bit
wide bidirectional bus. The CTRL-FPGA is connected to an USB interface and therefore able
to communicate with a PC. The design of the CTRL-FPGA is a central part of this test
environment development.

In order to measure the Side Channels, an oscilloscope is connected to the power supply of
the DUT-FPGA. An additional link between the oscilloscope and the SASEBO board is a
trigger signal, which is controlled by the CTRL-FPGA.

A certain part of the CTRL-FPGA, the DUT and the oscilloscope form the real-time (RT)
domain of the system. The other part of the CTRL-FPGA, the non-RT part of the
oscilloscope, and the PC do not work in RT, but perform more complex and abstract tasks.

The PC is responsible for multiple tasks:

 Supply data to and control the CTRL-FPGA;

 Control the oscilloscope in terms of parameters and options;

 Collect the data from the SASEBO board and the measurements from the

oscilloscope;

 Perform the Side-Channel Analysis.

The main components will be described in further detail in the next sections:

 Measurement Equipment

 FPGA Development

 System Synchronization and Timing requirements

 Development approach

D1.2 - Report on specifications and overall architecture

HINT D1.2 Page 26 of 39

Measurement Equipment

A digital oscilloscope is used for the data acquisition, which is capable of sampling 5 Giga
Samples per second. Traces with up to 10000 measurements points can be sampled. The
Oscilloscope supports low-level averaging with up to 512 samples.

It is equipped with a network interface, which can be used to communicate with a PC. This
communication channel can be used for data transfer as well as for the control of the
Oscilloscope. Two channels are used:

 Channel 1 is used to measure the power consumption of the SASEBO Board.

 Channel 2 is used as a trigger for the measurements.

FPGA Development

A central component of the Test Environment is the Control FPGA implemented on the
Spartan 3 FPGA on the SASEBO Board. A main task is to supply a synchronous input profile
to the DUT. Since the systems are working in the MHz range, the Input Vectors (IV) must be
available to the CTRL-FPGA in advance. In order to make the design more flexible and the
amount of input data smaller, there are three different possibilities to progress from one IV to
the next: One IV per clock cycle, IV update after a given amount of cycles, and reaction on
the outputs of the DUT. These ways are supported concurrently, so a data structure is
developed to describe such an input profile. A profile needs to be loaded to the memory of
the control FPGA in advance.

In order to keep the system as flexible as possible, the 38 I/O channels are not predefined,
but dynamically configurable. Depending on the DUT, each channel could either be
configured as an input, an output or be ignored.

To control the system, different commands are available to start, stop and reset the DUT.

The output of the DUT is sampled synchronously with the IV. As additional information, the
cycle number since the start of the execution is stored as well. With this approach, the
outputs in between two IVs are not sampled. This is a trade-off since the amount of memory
would grow substantially and no external memory is available on the SASEBO board.
Intelligent ways to handle all intermediate results (for example, by setting assert conditions)
could be implemented later in the project if needed.

System Synchronization and Timing requirements

The whole design of the CTRL-FPGA is divided into three main functional blocks as shown in
Figure 17:

Figure 17: Complete CTRL-FPGA design

D1.2 - Report on specifications and overall architecture

HINT D1.2 Page 27 of 39

 The USB connection module handles the communication with the PC.

 The memory is designed to store the IP as well as the outputs. The memory bus size
is scaled to the requirements so that per address one is respectively one output
sample can be stored.

 The DUT-Controller is responsible for the actual running of the IP and the
communication with the DUT. In order to react immediately to output events and to
reduce the delays on the critical path between the two FPGAs, the controller is
implemented using a pipeline structure with forward logic.

Figure 18: DUT Controller

Development approach

The implementation is handled in a module by module approach, beginning with the DUT-
Controller. For verification purposes, the remaining parts of the system are replaced by
simulation models. The whole system will be tested with a simulation model of the USB-
controller, which will be created based on the available information in the datasheets.

3.4.3 Tool chain and automation

In order to perform an SCA according to the presented workflow, a tool-chain is defined. The
following diagram (Figure 19) depicts the tools, equipments and interfaces involved.

The shown components are described in the following sections. These are:

 The Scenario File

 The Output File

 The simulator

 The Control Tool

 The automation

D1.2 - Report on specifications and overall architecture

HINT D1.2 Page 28 of 39

Figure 19: Test Environment and Tool-Chain

Scenario File

To run a test, a scenario needs to be loaded on the CTRL-FPGA. A dedicated file format has
been developed to change easily from a scenario to another.

Scenario files are organized into 4 main sections:

 General Information: Basic information about the scenario is stored in this section.

 Parameters: In this section the parameters mentioned above are defined.

 Input Profile: The Input steps are stored in this section.

 Commands: A sequence of the commands stated above.

Output File

The results of a test are stored in a file. This could be used for further analysis tools.

D1.2 - Report on specifications and overall architecture

HINT D1.2 Page 29 of 39

Simulator

To determine the genuine behaviour, the system needs to be simulated. Therefore, the DUT
is mounted onto a Test Bench that is based on the CTRL-FPGA design.

This Test Bench then reads the Scenario file, simulates the system (consisting of CTRL and
DUT) and writes the outputs to an output file.

Control Tool

The communication with the CTRL-FPGA is performed with a small tool. It receives a
scenario file in input, parses it, and configures the CTRL System accordingly. After the
execution of all defined commands, the outputs are read back and saved into an output file.

Automation

The connection between all components is made by scripts. Run on the PC, they allow us to
repeat the scenarios and to improve the analysis and decision process.

3.4.4 Requirements

In the SCA-based approach the purpose is to defined solutions to detect the HT first in Lab
conditions and secondly in a regular “on-the-field” or “at-time-of-use” situation.

In order to perform experiments with Hardware Trojans and Side Channels, an adequate
Test Environment is necessary. It includes on the one hand a DUT (either stand-alone or as
part of a product) and on the other hand some tools that process tests on the DUT.

Since many different tests should be run and many approaches should be tested, the system
must be designed in such a way that all of the different ideas are supported. The Test
Environment shall accept extensions if possible. On the other hand this Test Environment
shall prepare the work for the prototype so this architecture needs some relevant
FPGA/CPLD where the HT are inserted and detected. It shall also be ready to significantly
simulate the regular “on-the-field” or “at-time-of-use” testing.

Flexibility and adjustability are two crucial requirements for the Test Environment so the
following features must be supported:

 Input vectors need to be supplied in real time.

 Outputs need to be tracked throughout the execution.

 It could be necessary to go through many system states before the applicable one is
reached.

 Measurement equipment shall support many different approaches. It shall be capable
of sampling at least 5 Giga Samples per second to achieve sufficient sensitivity.

 It should be possible to automate tests as much as possible on the one hand to
detect HT more efficiently and on the other hand to get ready for “on-the-field” or “at-
time-of-use” tests.

 In order to support different ideas, technical points like clock frequency, number of I/O
and other low-level features should kept as flexible as possible.

D1.2 - Report on specifications and overall architecture

HINT D1.2 Page 30 of 39

3.4.5 Assessment of the relevance of SCA for HT detection

There is a rich body of literature describing how hardware Trojans may be implemented (see
the overview in D1.1 [REF 1]). A HT may be small or large, complex or simple, spread over
the layout or localized in one position. These are key factors that will influence the
detectability of the HT and hence determine requirements for our SCA based detection
approach.

Here we study the feasibility of detecting HTs with side channel analysis. We provide an
overview of the state-of-the-art in the literature with particular attention to limitations. Some of
these techniques shall serve as starting points for the development of our SCA based
architecture in lab conditions. Then we identify and briefly outline potential issues that may
arise when porting the architecture to an embedded implementation.

We first begin with an overview of works that deal with HT detection using electromagnetic
radiation-based SCA. [REF 21] acknowledges that any malicious insertion on the hardware
(such as a HT) should be reflected in some side-channel parameter, such as leakage current
or quiescent supply current, dynamic power trace, path-delay characteristic or (explicitly)
electromagnetic radiation (EM) due to switching activity (or any combination thereof). This
paper also states that EM radiation due to switching activity can be used to detect the
presence of extra Trojan gates in a non-invasive, non-destructive manner, meaning that the
circuit can be used in its nominal way while searching for the HT. In this reference it is also
stated that any technique based on measuring the electromagnetic radiation falls in the same
category of measuring the transient supply current, but the differences and the strengths of
each approach (EM vs. transient supply current) are not further analysed.

[REF 22] follows the same line of research. This reference shows that practical HT detection
using EM-based SCA techniques is possible and gives an example. The author successfully
identifies HT using a standard laboratory EM setup (consisting of near-field magnetic probes
ETS Lindgren 7405 of 1 cm diameter and a preamplifier from 100 KHz to 3 GHz). However,
we note that the conditions are very favourable to detect the HT: the HT’s details are
perfectly known, as well as the exact time when the HT is activated. This is usually not the
case in a practical HT detection scenario. This reference identifies some other constructive
applications for HT detection, such as watermarking, that may be of interest in other sections
of this project.

There is an important body of research that deals with the HT detection problem not explicitly
measuring the electromagnetic radiation. The approaches followed could be extrapolated to
the requirements of the project. The seminal paper [REF 20] gives an overview of the
possible methods available to detect HT. [REF 23] formulates some critics on side-channel
analysis techniques used for detecting HTs in some previous works. The main points of this
paper are that

a) “methods from previous works are not robust with respect to process and test environment
variations and therefore cannot reliably detect very small HTs”,

b) almost all previous works lack a thorough experimental section and hence its usefulness is
not very clear.

They further analyse the experiments carried out in the literature and identify two main
shortcomings: non-realistic, abnormally large HTs are used and HTs are inserted at gate
level or even at RTL. Such experiments do not accurately reflect a real situation, where the
HT would be put by an untrusted foundry at layout level. This insightful observation shows
that previous works use over-complex modifications of the original circuit to include the HT,
and thus the detection figures should be taken with due care.

[REF 24] provides a new side-channel based method for HT detection. It formulates the HT
detection problem as a signature outlier identification problem, and solves the HT detection

D1.2 - Report on specifications and overall architecture

HINT D1.2 Page 31 of 39

problem by comparing each signature with an estimated value of other signatures. The
method is agnostic with respect to the specific side-channel used (instantaneous power,
electromagnetic radiation). This method has the advantage of being somewhat resistant to
process variations, is scalable and does not require a trustworthy golden IC for reference.
The experiments are executed on HSPICE simulations on post-layout designs. Process
variations were simulated using Monte-Carlo techniques. The HT size (in gates) ranges from
0.1% to 0.5% of the total number of gates in the circuit, and the method is shown to detect
the HT more efficiently in comparison with previously published methods. This indicates how
small can be the smallest detectable circuit modification (namely, a HT) in ratio to the overall
circuit size.

[REF 25] tackles the issue of process variation in HT detection. It proposes a new HT
detection method that combines the current signature of a chip at two different time windows
to ``completely eliminate the effect of process noise''. The authors argue that this process
provides high detection sensitivity for HT of various sizes. The method does not require
golden chip instances as references. The experimental part of the paper deals with HSPICE
simulations and experiments on an FPGA.

Electromagnetic analysis has been extensively used in the SCA area. In what follows, we
analyse the key requirements for EM analysis and the possible application of such
techniques to the problem of HT detection. [REF 26] identifies shortcomings and limitations
of electromagnetic based SCA, namely, that the measurement setup is more complex
compared to traditional (non-electromagnetic) power analysis. Although the paper is written
in the context of SCA and not in the context of HT detection, some interesting conclusions
can be extrapolated. The authors identify 5 shortcomings:

a) Finding the relevant spatial positioning over the device under test can be a time
consuming process.

b) The measured signal has to be properly amplified before being exploited.

c) In some cases, the chip has to be de-capsulated using chemical means.

d) There is the risk of pollution by environmental noise or by the “unintentional emanations”.

e) The efficiency of the Differential ElectroMagnetic Analysis (DEMA) is highly dependent
on the probe used.

We note that a), b) and c) and d) are directly extrapolated to the context of EM SCA-based
HT detection, and these points describe the limits and limitations of such EM SCA-based HT
detection approach. We also note that b) and d) are issues that could severely affect the
reliability of the HT detection when ported to an embedded, off-lab application. The paper
carries out an interesting analysis of different state-of-the-art EM probes and concludes that
there are numerous factors, such as the shape of the probes, the DUT technology, the
spectral characteristics and the layout that influence the final efficiency of the EM SCA
attack. The paper uses specific-purpose equipment for the execution of the experiments in a
laboratory setting.

Some details about high-resolution EM measurement setups are discussed in [REF 27],
along with an interesting discussion of side-channel cartography. [REF 29] also deals in
more details with the EM measurement setup. The inductive near-field EM probe used has a
resolution of 100 micrometer, and is used in conjunction with a 30dB amplifier, an X-Y table
of a step size of 50 micrometer and an oscilloscope with a sampling rate of 5 GS/s. The main
contribution of the paper is that localized attacks are possible. We note that the fact that
localized measurements are possible does not necessarily imply that EM-based HT detection
is easier – the HT could be spread over the original circuit rather than concentrated in one
particular spot.

D1.2 - Report on specifications and overall architecture

HINT D1.2 Page 32 of 39

Chapter 4 HINT Application Prototypes

The HINT application prototypes are tailored according to the two use cases studied in the
document D1.1 [REF 1] (the ID-card use case and the PMR use case) and the two security
requirements of hardware authenticity and hardware integrity. In this chapter, we provide a
high level description of the prototypes that shall be demonstrated in WP4. A first prototype
shall be relevant to the ID-card use case where hardware authentication, based on PUF-
based key generation, shall be illustrated. The second prototype shall be based on the PMR
use case where hardware integrity verification, based on HT detection, shall be illustrated.

4.1 Unclonable ID Cards Prototype

For the HINT application prototype related to Unclonable ID-Cards, we plan to demonstrate
one out of two features, an authentication through a PUF-based Challenge-Response
Protocol or a digital signature with private key extracted from a PUF instead of stored in
persistent memory. These two options are described in the following.

4.1.1 PUF-based authentication

In the PUF-based authentication application, an ID-card shall authenticate itself by answering
to a challenge (i.e. a random bit-string of a specified format prompted to it) with a properly
generated response. The response shall be generated by key extracted from a HW-based
PUF.

4.1.1.1 Enrolment / Registration

Each ID-card to be registered will be equipped with a unique identifier. This may for instance
be a number written into the card’s NVM.

During the enrolment phase, for each ID-card to be registered a sufficient number of
authentication keys will be generated by querying the embedded PUF. By its very nature,
each card’s genuine PUF (being unclonable) needs to be used for authentication key
generation, so the process cannot be simulated. Therefore, this needs to be performed for
each individual ID-card to be registered, in a secure environment; moreover for symmetric
authentication systems the resulting keys need to be safely stored into a database along with
the corresponding ID-card’s identifier, and kept secret. In case of asymmetric authentication
a public key has to be generated either on card or off card within a secured environment.

4.1.1.2 Identification / Authentication in the field

As the first step within an authentication protocol, the ID-card to be authenticated sends its
ID-number to the server for identification. Note that identification here means the association
of an identifier with an entity and does not include the verification of this association. The
verification is achieved through the subsequent authentication procedure.

The card terminal is either trusted and in possession of the symmetric key (or a derivative
from the one, depending on a key management hierarchy, or in the asymmetric case
requests a public key of that very card from the server database; the card terminal then
transmits a challenge to the ID-card. The ID-card’s generates a response based on the key
extracted from the PUF and that challenge.

D1.2 - Report on specifications and overall architecture

HINT D1.2 Page 33 of 39

4.1.2 Extracting a Signature-Key from a PUF

4.1.2.1 PUF-based Signature-Key recovery

The basic security feature to be demonstrated with the PUF-based signature application is a
digital signature generated by an ID-card, whereby the private signing key is retrieved
through an internal PUF and is never stored in any non-volatile memory of the card. So apart
from the very short time-intervals where it is residing in RAM or CMOS flip-flops inside the
cryptographic engine during signature generation, the private key does not exist in a
readable form accessible for an eavesdropper. The appealing property lies in the fact that a
vast number of increasingly successful attacks aiming at reading out a smart card’s Flash or
EEPROM memory will no longer be applicable at all.

The envisaged application is based on the ECDSA signature scheme, since it provides
private keys of comparatively short bit-length while at the same time offering a high security
level. For each unique private signature key for an ECDSA signature helper data shall be
calculated from the PUF and stored on the ID-card’s chip. Depending on the chosen
application, this means that one can either (see Section 3.3.3)

1. Derive a private signature key from a reference PUF response

2. Embed an externally generated secret signature key into a codeword

Subsequently such private signature key shall be recovered from the helper data and a fresh
PUF response on demand.

It is usually not possible to use a PUF output directly as a private signing key. The main
reason for this is the “noise” to be considered for each PUF-response: any two PUF
responses will show at least slight differences between their resulting bit strings. However, in
order to be useful for conventional cryptographic schemes, the encapsulated key needs to be
recovered exactly, i.e. without any bit errors. Therefore, a helper data scheme is used which
first maps the key to be encapsulated to a code word, and then merges this code word with a
PUF response. The difference between the PUF response used for enrolment and a PUF
response used for key recovery is to be regarded as noise, the influence of which needs to
be compensated.

As a consequence, the PUF response must be long enough to allow for redundancy of the
error correction applied during post-processing, which usually means the PUF response
must be as long as a valid code word. The PUF response should be kept secret, since (along
with the helper data, which themselves usually are not considered secret) it allows key
recovery for an adversary. This implies that also the PUF response should never be stored in
NVM at any time.

We chose to configure ECDSA signatures with key length of approximately 230-250 bits.
Depending on the capacity of the error-correction code, a PUF response needs to be
significantly longer (usually a multiple of the key-length!). The choice of error correcting code
and its configuration depends on a couple of factors, like the error-rate of the PUF used and
hence the resulting number of bits which need to be corrected, the failure rate to be accepted
within the system, and also the computational capacity available by the ID-cards chip (which
might be a limiting factor).

4.1.2.2 Enrolment / Key-generation / Helper Data generation

As outlined above, we intend to use the ECDSA signature scheme, with a chosen bit-length
of approximately 230-250 bits. Each ID-card shall be endowed with an individual private
scalar which constitutes the private signing key – basically one large number (e.g. 230 bit) –
while system-wide parameters (i.e. curve parameters) are generated outside the cards and
shared among all participants of the application by storing them in their cards’ NVM.

D1.2 - Report on specifications and overall architecture

HINT D1.2 Page 34 of 39

Key generation and key encapsulation shall be completely performed on-card. Since an
ECDSA capable ID-card must provide a true random number generator (RNG) anyhow, this
shall be used to generate the private signing key (from which the card also derives the
corresponding public key). The challenging part of key-generation lies in encapsulation of the
private key, since this comprises the generation of the helper data. To this end, the private
key is encoded to a code word under the chosen error correcting code, and a PUF response
is generated and merged with the resulting code word to generate the helper data.
Subsequently, the helper data are stored to the ID-card’s NVM, and the private key is safely
deleted from RAM.

It is prudent to store some check-value derived from the key (e.g. a hash) along with the
helper data to allow a self-check after each key recovery. This check value must be
generated such that no information about the key can be derived from it.

Note that all steps involved are processed inside the ID-card’s chip. Moreover, the private
key (or any PUF response) is never stored in NVM during the entire process, but only in
RAM. The helper data being stored in the ID-cards NVM may be extracted by an attacker
with high enough attack potential, but without a corresponding PUF response the attacker
should not be able to retrieve the encapsulated private key from them.

The process of key-generation may furthermore be tight to a specific “role” and requiring
“role authentication”, depending on the application. This means that key generation may only
be invoked if specific conditions are satisfied (for instance may only be initiated by an
authorized entity authenticating itself prior to key-generation), and/or may only be performed
within a secure environment. Also, output of the ID-card’s public key and subsequent
verification of proper generation of the private key by the outside world (e.g. by signing a
test-challenge, or running a DH-key agreement) shall be an integral and mandatory part of
key generation in order to declare the enrolment process as complete. Optionally the
enrolment body may issue a certificate comprising the card holder’s credentials and his
public key, and store this certificate in a database and/or in the ID-card itself.

4.1.2.3 Key-recovery / Signature generation

Signature generation is considered to be frequently performed in-the-field, so potentially
within a non-secure environment.

In order to initiate each signing process and in particular each PUF-response generation, the
legitimate holder of the card first needs to authenticate himself towards his ID-card; this is
usually done by a PIN-request. Subsequently for each signing process, a fresh PUF-
response is generated inside the card, and the signing key shall be extracted from the helper
data using this PUF response. Prior to signature generation, a self check can be performed
on the recovered key provided such a check value has been generated during key
generation, and only if this check is passed (i.e. if it is confirmed that the private key has
indeed been correctly recovered) that key is actually used for the requested signature
generation. Following the signing process, the private key shall finally be safely deleted from
RAM, likewise the PUF response. Note that the private signing key (or any PUF response) is
never stored in any non-volatile memory of the card at any point in time.

The most challenging part within the key recovery procedure consists in decoding the result
from the merge of the PUF response with the helper data. Unfortunately, for most error
correcting codes, decoding is far more expensive than encoding in terms of computation
complexity. So the time complexity introduced by the key recovery is expected to contribute
significantly to the overall processing time of the entire signature generation process,
although decoding is expected to be cheaper in terms of time complexity than the
cryptographic signing operation itself.

D1.2 - Report on specifications and overall architecture

HINT D1.2 Page 35 of 39

4.1.3 ID-Card prototype specifications

A first version of the micro-architecture specification for the PUF module of the PUF-based
eID-Card IC is available at IFAT. The module will be embedded in an innovation chip, which
is an instance of a "close-to-product" implementation with all necessary components used in
state-of-the-art eGovernment micro controllers. This specification cannot be made publicly
available since there are product features reflected, which are not subject to the development
of the HINT project.

The strategy to embed the novel PUF module in a fully equipped eGovernment micro
controller setup is the ease of use when implementing novel protocols making use of the
PUF functionality. For example it is possible to implement an asymmetric protocol making
use of the elliptic curve hardware accelerator for cryptographic operations and finite field
arithmetic. Also interfacing to terminal maybe performed by standard communication means
such as ISO 7816 contact based or ISO 144443 contactless protocols. The alternative way of
implementing the novel PUF module micro-architecture as a stand-alone module would
provoke extremely high effort in interfacing the module by proprietary protocols based on
manually established connections.

4.2 PMR Prototype

For HINT the aim of the PMR prototypes is to demonstrate the trusted features of some PMR
handhelds stemming from the after-delivery detection of HT.

4.2.1 Overview of the prototypes

The PMR prototype will consist of 3 PMR handhelds embedding a CPLD and some test
environment. One handheld Hone will be genuine (without HT). The second and third
handhelds HTwo and HThree will be modified to include some examples of HT. The same
HT will be embedded in HTwo and HThree but the third handheld may be available as an
open board to ease measurements and to better show the means and results of HT detection
process.

The HTwo and HThree can show that due to the HT presence some behaviour changes by
comparing to Hone. An important aspect is the intended effects of the HT. Possible effects of
the HT might include reduction in system reliability, the implementation of a backdoor in
order to leak some secret information, a change of the functionality, or even complete
destruction of the system (we will avoid the latter). Those modified behaviours need to be
further defined after working on WP3 and WP4.

The actual scenarios that can be demonstrated could be for example:

 freezing the communication buses between the processors and show disruption on
communications

 showing some information leakage that can result from a HT insertion

We shall also define where and how this modified behaviour can be implemented on the
handheld. The possible HT can for instance infect a FPGA or CPLD connected to an internal
bus that could be abused. Also, such components which might appear to be harmless and
non-critical can be used for malicious purposes. For example, a power source which
introduces glitches sporadically could be used to cause errors and therefore enable a fault
attacks.

D1.2 - Report on specifications and overall architecture

HINT D1.2 Page 36 of 39

In addition, the test environment can be used to show the detection functioning by applying it
to Hone (which shall show no detection) or HTwo and more completely to HThree (which
both shall show detection of HT).

4.2.2 The “on-the-field” or “at-time-of-use” checking

The “on-the-field” or “at-time-of-use” checking means that regularly the user submits his
handheld to a test environment. This could occur when charging the device on a docking
station for instance. It will tell him whether his handheld is still genuine (it was on the delivery
time as the same kind of verification was done at the end of manufacturing process to
warranty the delivery). In case a HT is detected, or if there is any doubt there might be one,
the handheld can be sent back to maintenance or to manufacturer for further investigation.

First the test environment shall show that handheld Hone is genuine, e.g. without HT. Then
the test environment could show detection of HTwo’s trojan on HTwo itself or on HThree with
enhanced capacity detection.

The specification and implementation of those prototypes shall be further studied in WP4,
based on the outcomes from WP3.

The challenges in these prototypes are to implement in a real operating device a
representative HT whose behaviour can be visible. This is mandatory to actually show the
demonstration. The next big challenge is to show detection of HT on this real device like
HTwo or even as an open board of a real device like HThree.

HOne HTwo

D1.2 - Report on specifications and overall architecture

HINT D1.2 Page 37 of 39

Chapter 5 Conclusion

The HINT project addresses the trustworthiness of critical devices and their components
using a novel scheme relying on two main technologies, PUF-based authentication and Side-
Channel based integrity verification.

In the current document, the use case based security analysis done in D1.1 [REF 1] is
translated into technical terms to highlight the technological bricks that shall be studied in
HINT.

Then details of the architectures that exploit these two technologies (PUF-based architecture
and SCA-based architecture) are given. Those trust architectures are detailed in chapter 3
"HINT Architectures" including the requirements to implement and test those features.

Even if they differ in their nature, when combined, they complement each other to achieve
genuine complementary anchors in order to enable a trusted computing architecture for
critical devices. Furthermore the suggested architectures shown in the HINT project on smart
cards and handhelds are expected to be applicable to many different platform types such as
smart cards or SD cards, smart phones or mobile devices, even workstations and servers.

The most challenging part is to achieve regular “on-the-field” or “at-time-of-use” checking.
This will be demonstrated in the two HINT application prototypes that we describe in last
chapter, "HINT Application prototypes".

Finally this WP1 has stated the usages and security issues of the overall trust architectures.
The preliminary definitions of the PUF-based architecture and the SCA-based architecture
are laid out. This document has defined the scope of work of the next work packages: WP2,
WP3 and WP4. Current findings will be supplemented and improved throughout the project
during those next WPs as results become available.

D1.2 - Report on specifications and overall architecture

HINT D1.2 Page 38 of 39

Bibliography

[REF 1] HINT D1.1 “Report on use case and architecture requirements”, February

2013

[REF 2] “Protection Profiles for secure signature creation device – Part 4: Extensions for

device with key generation and trusted communication with certificate generation

application”

[REF 3] “Machine readable travel document with ICAO application, extended access

control with PACE (EAC PP)”, BSI-CC-PP-0056-V2-2012

[REF 4] “Security IC Platform Protection Profile”, Version 1.0, BSI-CC-PP-0035-2007

[REF 5] “Java Card Protection Profile – Open Configuration”, Version 3.0, 2012, ANSSI-

CC-PP-2010/03-M01

[REF 6] Cryptographic Modules, Security Level "Enhanced", Version 1.01, BSI-CC-PP-

0045-2009

[REF 7] “Common Criteria Management Committee – Vision Statement for the future

direction of the application of the CC and the CCRA”

[REF 8] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, “Fuzzy Extractors: How to
Generate Strong Keys from Biometrics and Other Noisy Data,” SIAM J. Comput.,

vol. 38, no. 1, pp. 97-139, Mar. 2008.

[REF 9] B. Gassend, M. van Dijk, D. E. Clarke, E. Torlak, S. Devadas and P. Tuyls,

“Controlled physical random functions and applications,” ACM Trans. Inf. Syst.

Secur., vol. 10, no. 4, pp. 1-22, Jan. 2008.

[REF 10] J. Delvaux and I. Verbauwhede, “Side Channel Modeling Attacks on 65nm Arbiter

PUFs Exploiting CMOS Device Noise,” in IEEE Int. Symposium on Hardware-
Oriented Security and Trust, HOST 2013, Jun. 2013.

[REF 11] A. Konczakowska and B. M. Wilamowski, “Noise in Semiconductor Devices,”

Industrial Electronics Handbook, vol. 1 Fundamentals of Industrial Electronics,
2nd Edition, chapter 11, CRC Press 2011.

[REF 12] S.S. Mansouri, and E. Dubrova, "Ring oscillator physical unclonable function with
multi level supply voltages," Computer Design (ICCD), 2012 IEEE 30th

International Conference on Computer Design, pp.520-521, Sept. 30 2012 - Oct.

3 2012

[REF 13] J.W. Lee, D. Lim, B. Gassend, G.E. Suh, M. van Dijk, and S. Devadas, “A

technique to build a secret key in integrated circuits for identification and
authentication applications,” in IEEE Symposium on VLSI Circuits, VLSIC 2004,

pp. 176-179, Jun. 2004.

[REF 14] Z. Paral, and S. Devadas, “Reliable and efficient PUF-based key generation
using pattern matching,” International Workshop on Hardware-Oriented Security

and Trust - HOST , 2011.

[REF 15] D. Merli, D. Schuster, F. Stumpf and G. Sigl, “Semi-invasive EM attack on FPGA

RO PUFs and countermeasures,” Proceedings of the Workshop on Embedded

Systems Security (WESS), 2011.

[REF 16] D. Merli, D. Schuster, F. Stumpf and G. Sigl, “Side-channel analysis of PUFs and

fuzzy extractors,” Proceeding TRUST’11 Proceedings of the 4th international

D1.2 - Report on specifications and overall architecture

HINT D1.2 Page 39 of 39

conference on Trust and trustworthy computing, pp. 33-47, 2011.

[REF 17] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas and J. Schmidhuber,

“Modeling attacks on physical unclonable functions,” In proceedings of the 17th

ACM conference on Computer and communications security, 2010.

[REF 18] D. Yamamoto, G. Hospodar, R. Maes and I. Verbauwhede, “Performance and

Security Evaluation of AES S-Box-Based Glitch PUFs on FPGAs,” SPACE 2012.

[REF 19] P. Tuyls, G.J. Schrijen, B. Skoric, J.V. Geloven, N. Verhaegh and R. Wolters,

“Read-Proof Hardware from Protective Coatings,” In proceedings of CHES, 2006.

[REF 20] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, B. Sunar. “Trojan Detection
using IC Fingerprinting”. In IEEE Symposium on Security and Privacy, 2007,
IEEE Computer Society.

[REF 21] S. Narasimhan, S. Bhunia. “Hardware Trojan Detection”, in M. Tehranipoor and
C. Wang (eds.), Introduction to Hardware Security and Trust, Springer 2012.

[REF 22] A. Lakshminarasimhan. “Electromagnetic side-channel analysis for hardware and
software watermarking”. MSc Thesis, University of Massachusetts Amherst,
September 2011.

[REF 23] S. Dupuis, G. di Natale, B. Rouzeyre. “Is side-channel analysis really reliable for
detecting hardware trojans? ”, In proceeding of Conference on Design of Circuits
and Integrated Systems, 2012.

[REF 24] J. Zhang, H. Yu, Q. Xu. “HTOutlier: Hardware trojan detection with side-channel
signature outlier identification”. In IEEE International Symposium on Hardware-
Oriented Security and Trust (HOST) 2012.

[REF 25] S. Narasimhan, X. Wang, D. Du, R. Subhra Chakraborty, S. Bhunia. “TeSR: A
robust temporal self-referencing approach for Hardware Trojan Detection”. In
IEEE International Symposium on Hardware-Oriented Security and Trust (HOST)
2011.

[REF 26] B. Mounier, A-L. Ribotta, J. Fournier, M. Agoyan, A. Tria. “EM Probes
Characterization for Security Analysis”. In D. Naccache (Ed.): Quisquater
Festschrift, LNCS 6805, pp. 248-264, 2012, Springer.

[REF 27] L. Sauvage, S. Guilley, Y. Mathieu. “ElectroMagnetic Radiations of FPGAs: High
Spatial Resolution Cartography and Attack of a Cryptographic Module”, in ACM
TRETS, Volume 2 Issue 1, March 2009, ACM

[REF 28] J. Heyszl, D. Merli, B. Heinz, F. De Santis, G. Sigl. “Strengths and Limitations of
High-Resolution Electromagnetic Field Measurements for Side-Channel
Analysis”, in proceedings of Cardis 2012, LNCS 7771, pp. 248-262, Springer

[REF 29] J. Heyszl, S. Mangard, B. Heinz, F. Stumpf, G. Sigl “Localized Electromagnetic
Analysis of Cryptographic Implementations”, in proceedings of CT-RSA 2012,
LNCS 7178, pp. 231-244, Springer

[REF 30] C. Bösch, J. Guajardo, A. Sadeghi, J. Shokrollahi, P. Tuyls. “Efficient Helper
Data Key Extractor on FPGAs”, in Proceedings of CHES, 2008

[REF 31] Ilan Shomorony. “Authentication schemes based on physically unclonable

functions”. Master’s thesis. Worcester Polytechnic Institute, 2009.

[REF 32] G. Hospodar, R. Maes, and I. Verbauwhede, “Machine Learning Attacks on 65nm

Arbiter PUFs: Accurate Modeling poses strict Bounds on Usability,” in IEEE
International Workshop on Information Forensics and Security, WIFS 2012, pp.

37-42, Dec. 2012.

	Chapter 1 Introduction
	Chapter 2 HINT Use Cases Security Analysis
	2.1 HINT contribution to Protection Profiles
	2.2 Security Functions for the HINT ID-Card Use Case
	2.2.1 Specification of Security Functionality enabled through PUF technology
	2.2.1.1 Solely PUF-based Authentication of an ID-card
	2.2.1.2 PUF-Based Signature
	2.2.1.3 PUF-Based Authentication Making Use of Signature Schemes
	2.2.1.4 PUF-Based Authentication Making Use of Diffie-Hellman Variants

	2.2.2 Security Features concerning the PUF itself
	2.2.2.1 PUF-Authentication of an ID-card
	2.2.2.2 PUF-Based Signature

	2.2.3 HINT contribution to Protection Profiles for unclonable ID-cards

	2.3 Security Analysis of the PMR Use Case
	2.3.1 Security Analysis
	2.3.1.1 The Threats
	2.3.1.2 The Organisational security policies
	2.3.1.3 The Assumptions
	2.3.1.4 The Security Objectives

	2.3.2 Coverage

	Chapter 3 HINT Architecture
	3.1 HINT & Trusted Computing
	3.2 System Overview
	3.3 PUF-based Architecture
	3.3.1 Trust Architecture Specification
	3.3.2 Hardware Architecture Specification of the ID-Card Semiconductor Device
	3.3.3 Helper data schemes needed for Post-Processing of PUF Raw Data
	3.3.4 Assessment through robustness and vulnerability analysis

	3.4 SCA-based architecture
	3.4.1 Trust Architecture specification
	3.4.2 Technical specification of the platform
	3.4.3 Tool chain and automation
	3.4.4 Requirements
	3.4.5 Assessment of the relevance of SCA for HT detection

	Chapter 4 HINT Application Prototypes
	4.1 Unclonable ID Cards Prototype
	4.1.1 PUF-based authentication
	4.1.1.1 Enrolment / Registration
	4.1.1.2 Identification / Authentication in the field

	4.1.2 Extracting a Signature-Key from a PUF
	4.1.2.1 PUF-based Signature-Key recovery
	4.1.2.2 Enrolment / Key-generation / Helper Data generation
	4.1.2.3 Key-recovery / Signature generation

	4.1.3 ID-Card prototype specifications

	4.2 PMR Prototype
	4.2.1 Overview of the prototypes
	4.2.2 The “on-the-field” or “at-time-of-use” checking

	Chapter 5 Conclusion

